Department of Electrical and Computer Engineering
The Robotics Institute

Metrology Systems Perspective on Micro/Nano Devices

Gary K. Fedder fedder@ece.cmu.edu Carnegie Mellon University Pittsburgh, PA

NIST Workshop on Metrology Needs for Micro/Nano-Technology
September 21, 2005

MEMS Metrology

- Dimensions
 - displacements, modes
 - widths, gaps
 - **■** sidewalls, underwalls
 - roughness
 - curling, shape
- Material properties
 - *E*, v
 - **■** stress, stress gradients
 - density
 - damping
 - thermal properties
 - active properties

- **■** Tribology
 - **■** Friction, Stiction
 - Creep
 - Wear
 - Fatigue
 - static / dynamic
- Yield
 - defects
 - faults
- Variation
 - temperature
 - die to die variation
 - run to run variation
 - aging
 - packaging
 - ambient

MEMS Design Flow

MEMS Circuit Schematic

- Schematic composition of behavioral models
- Tools:
 - MEMSCAP's MEMSPro
 - Coventor's ARCHITECT
 - UC Berkeley's SUGAR
 - **Carnegie Mellon's NODAS**

MEMS Design Testbed Vision

- Driven by MEMS Schematic/Simulation Design Tools
- Flow A) MEMS metrology system
 - Extract structure (size and defects)
 - Generate solid model and mesh
 - Back annotate to MEMS schematic
- Flow B) MEMS Automated Testbed
 - Design and simulate microstructures
 - Download testbed configuration to Microvision system
 - Compare simulated and measured results

Automated Testbed Data Flow

CMOS-MEMS Technologies

- Foundry process technology base
 - Highly integrated microsystem platforms
 - But, MEMS material properties are not quantified
- Questions always asked:
 - How reliable?
 - What is variation to "X"?
- Requires LOTS of samples and measurements
 - time, effort and \$

Thin-Film CMOS-MEMS

Membrane CMOS-MEMS

DRIE SI CMOS-MEMS

Geometry Example: CMOS MEMS Beams

- Top metal is exposed and thinned by ion milling
- Underlying metal layers may be exposed, depending on layout

Oxide layers

Process & DRC Test Structures

CMOS-MEMS Plate

Si undercut

Plate with no Holes Undercut Test

Plate With Holes Release DRC

6 μm gap 6 μm x 6 μm holes {60.5, 64.5, 68.5, 72.5} μm plate width

Beam Release DRC

10 μm gap {13.0, 16.6, 19.5, 22.5, 26.3, 30.0, 34.2} μm beam widths

Material & Device Test Structures

Mechanical properties:

Beam Resonator Length 125 μm Plate 15 μm x 15 μm

RF-MEMS passives:

Inductor

Axial Stress

Capacitive interfaces:

Output Buffer Amp

Crab-leg Resonator

Cantilever Beam

G. K. Fedder - 11

M-TEST P.M. Osterberg, S.D. Senturia, JMEMS '97

- Pull-in of cantilevers, fixed beams and diaphragms
- \blacksquare Electrical test to extract E and tensile σ
- Challenge to generalize and be accurate
- e.g., compressive σ, stress gradients, support compliance, substrate curvature

Length (µm)

Lateral Curl Example

- Metal offset creates lateral stress gradient
- Direction of curl depends on CMOS misalignment
- SEM shown is Agilent 0.5 µm CMOS
 - 100 µm-long, 1.2 µm-wide beams
 - 0.3 µm offsets of metal-2 and metal-1 with respect to metal-3

Actuator Operation

■ Stiff actuators made with beams single-ended folded-flexure

in parallel (e.g. 5 beams)

40 × 200 μm² actuator provides up to 25 μm stroke (7.5 mW) and 1.2 ms response

Electrothermal Lateral Actuator (Temperature Distribution)

Measurement:

maximum T = 375K

Simulation:

maximum T = 459K

- Driving voltage = 2.5V
- Background temperature is set to 300K

Cyclic Fatigue

- "Notch" structure first presented by **Failure Analysis Associates and MIT**
- Studies few and far between...
- Dependent on ambient

polysilicon example:

C. Muhlstein et al, Tribology Issues and Opportunities for MEMS, B.Bhushan, 1997

CMOS-MEMS accelerated fatigue example, M. Lu et al, MRS, 1998

4.5 million cycles, 10 µm stroke, 620 MPa

Material Property Changes with Fatigue

- Polysilicon grain dilatation with cyclic stress
- Two-peak resonant frequency profile with time
- Aged structures stabilize faster

AFM observation of the impact zone (beam/dielectric interface)

MEMS Fault Testing

R.D. Blanton, Carnegie Mellon

■ Specification-Base Test for MEMS Defects Insufficient ADI accelerometer example

Accelerometer Built-In Self-Test (BIST)

R.D. Blanton, Carnegie Mellon

Multi-mode actuation to identify faults

The Case for Built-In Self-Test (or "Self-Assessment")

- BIST is needed for defect detection and diagnosis
- BIST however can also be used in the field during the lifetime of the design as a "reliability" watchdog or checker
- BIST also can be used for process characterization in the context of the given system
 - standard test structures *lack* the geometric richness that you find in real designs
 - using BIST measures along with appropriate model(s), allows one to keep track of the process over time with very fine granularity

Conclusions

- Great need for more automated metrology tools and techniques
 - Analysis of variation, faults and reliability require lots of testing
- Mechanisms should be employed to encode best practices and design knowledge
 - e.g. test structures with analysis equations
 - widely adopted, not proprietary
- Future may lead to more built-in self-test in production MNT systems